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Abstract

As genotyping methods move ever closer to full automation, care must be taken to ensure
that there is no equivalent rise in allele-calling error rates. One clear source of error lies with
how raw allele lengths are converted into allele classes, a process referred to as binning.
Standard automated approaches usually assume collinearity between expected and meas-
ured fragment length. Unfortunately, such collinearity is often only approximate, with the
consequence that alleles do not conform to a perfect 2-, 3- or 4-base-pair periodicity. To
account for these problems, we introduce a method that allows repeat units to be fractionally
shorter or longer than their theoretical value. Tested on a large human data set, our algorithm
performs well over a wide range of dinucleotide repeat loci. The size of the problem caused
by sticking to whole numbers of bases is indicated by the fact that the effective repeat length
was within 5% of the assumed length only 68.3% of the time.
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Despite increasing interest in single nucleotide polymorph-
isms, microsatellites remain arguably the most important
class of markers for use in population genetic studies
(Schlotterer 2004). Since microsatellites were first used as
markers around 1990, there has been a steady switch in the
way alleles are visualized, from radioactive incorporation
to fluorescent dye technology. In theory, fluorescent
methods allow much greater levels of automation, with
internal size markers aiding size estimation and various
algorithms assigning fragments to allele classes. However,
the reality appears to be that progression from raw fragment
lengths to allele sizes remains an important challenge
(Ginot 

 

et al

 

. 1996; Ewen 

 

et al

 

. 2000; Weeks 

 

et al

 

. 2002).
Several strategies have been developed for allele assign-

ment. Where allele size distributions are already well docu-
mented, for example in European human populations,
any particular fragment can be compared against a data-
base of expected lengths and assigned to the closest. This

seems to work well, but becomes prone to error when new
alleles are found, and is of course inappropriate for most
nonhuman populations and loci where reference stand-
ards are not available. Consequently, in most cases alleles
need to be ‘binned’, with fragments assigned to allele
categories according to their lengths. Alternative methods
of binning include fitting observed allele lengths to bins
defined by the repeat unit of the locus being considered
(e.g. dinucleotide repeats being matched to a two base-pair
periodicity) or simply rounding fragment lengths to the
nearest base.

Although standard binning methods appear to work,
the goal of fully automated binning still seems some way
off. For example, one study using the program 

 

genotyper

 

to place 816 alleles from 12 loci in 38 samples (Ginot 

 

et al

 

.
1996) reported an error rate of 

 

∼

 

5%, far higher than with
manual approaches (Hoffman & Amos 2005a). Similarly,
in a study using a commercial panel of 400 human primer
pairs and 60 nonoptimized fine-mapping markers (Ewen

 

et al

 

. 2000), binning errors made by 

 

genotyper

 

 accounted
for 21.05% and 39.62% of call errors respectively. Else-
where, Weeks 

 

et al

 

. (2002) compared results from two
laboratories and found that 82.8% of discrepancies in dinucle-
otide repeat microsatellite scores and 50% of tetranucleotide
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scores were due to different decisions about placing alleles
in bins. Unfortunately, the overwhelming majority of
studies that report and/or quantify binning errors belong
to the field of human genetics, bringing two disadvantages:
first, these results may well not reach the broader molecular
ecology community, and second, they may underestimate
the problem because human systems are by and large
well-optimized.

Binning errors may arise in many ways, but the most
important and often overlooked problem is that DNA frag-
ment mobility depends both on length and on sequence
(Rosenblum 

 

et al

 

. 1997; Wenz 

 

et al

 

. 1998). Thus, DNA frag-
ments with a high GC content migrate differently com-
pared with equivalent length pieces having a low GC
content. Consequently, depending on the GC content of
the flanking sequence, alleles may show periodicities that
are close to, but not exactly the same as the underlying
repeat unit. At loci where the effective repeat length differs
more than negligibly from the nominal repeat length, auto-
matic fixed binning will often place bin boundaries within
rather than between the clusters of lengths that represent
each allele. Typically, predetermined bin widths work
nicely at one end of the length distribution but poorly at
the other end (Ewen 

 

et al

 

. 2000).
In addition to the problems of fixed-sized bins, there

exist at least two further ways in which the binning process
can be disrupted. First, mutations in the flanking sequence
can create heterogeneity in the effective length of an allele,
thereby broadening the length distribution and reducing
the accuracy of binning. Second, while most mutations
appear to involve changes of whole numbers of repeats,
occasionally alleles change in length by other sizes, for
example, a dinucleotide locus losing or gaining a single
nucleotide. Such changes present a challenge for the bin-
ning process (Ewen 

 

et al

 

. 2000) because the alleles they
create may lie on what would otherwise be a valid bin
boundary.

Poor binning has a number of potentially detrimental
consequences. First, even small numbers of resulting
errors can seriously impact individual identification (Creel

 

et al

 

. 2003; Waits & Leberg 2003) and parental exclusion
(Hoffman & Amos 2005a, b). Moreover, by splitting frag-
ments that in reality represent one allele into two different
length classes, the validity of allele frequency estimates
will be undermined. This will adversely affect studies of
population structure and distort estimates of key para-
meters such as heterozygosity. In the worst-case scenario, the
outcome of binning will depend on the particular gel or
experiment being run. For example, length estimates can
vary with the speed at which polymerase chain reaction
products run through a gel or capillary relative to the
standard fragments, and this can in turn vary with stochastic
variation in ambient temperature and with different qual-
ities of the separation matrix (Ghosh 

 

et al

 

. 1997; Rosenblum

 

et al

 

. 1997; Bruland 

 

et al

 

. 1999; Williams 

 

et al

 

. 1999; Davidson
& Chiba 2003). When this happens, an allele run on one
day may be consistently scored as length 

 

X

 

 when exactly
the same allele in the same set of samples run on a different
day would be scored as 

 

X

 

 

 

±

 

 1 repeat or base pair. Since
samples are often analysed in batches from similar times
and places, this has the potential to create artefactual genetic
differences.

Most of the problems described above can be (and often
are) addressed by careful manual scrutiny and adjustment
where poor binning is apparent. However, in our experi-
ence this is not always the case, sometimes because the
operator is unaware that automated binning is far from
foolproof, and sometimes because of time constraints.
Even where manual checking is carried out, the process is
often tedious and time-consuming. To improve both the
accuracy and speed of the binning process, we have there-
fore developed a simple algorithm that combines a flexible
approach to finding the effective repeat unit size with an
output that allows rigorous checking for any other prob-
lems such as intermediate allele sizes. To test the approach,
we used a published data set from a whole genome screen
in humans for hepatitis B.

 

Materials and methods

 

We have designed a program, ‘

 

flexibin

 

’ to implement
automated binning. The program is available on Bill Amos’
website (http://www.zoo.cam.ac.uk/zoostaff/amos/) and
can also be obtained by contacting w.amos@zoo.cam.ac.uk.
The basic algorithm is simple and has been coded in Visual
Basic as an Excel Macro. First, to ensure that allele lengths
reflect as much as possible the number of repeats they
contain, all lengths are first trimmed to a length 

 

X

 

 – min + 3,
where 

 

X

 

 is the original length, min is the minimum allele
length recorded and the value of 3 is added to eliminate
problems of negative allele lengths (see below). The next
step is to explore all likely binning patterns. In terms of
actual mobility on a gel, each dinucleotide repeat unit will
contribute approximately, but seldom exactly, 2 base pairs
(bp). We refer to this as the effective repeat unit length, EL,
assumed to lie between 1.7 to 2.3 bp for dinucleotides. In
addition to some integer number of repeats, there is also
likely to be a remainder, termed the offset, O. Ideally, all
alleles will have an expected mobility of O + 

 

n

 

EL, where 

 

n

 

is the number of repeat units.
To find the best bin locations for a set of observed mobil-

ities, we exhaustively explore all possible combinations of
values for O and EL. For each combination, the program
considers every observed fragment in turn and determines
the nearest expected length, equivalent to the centre of
the bin in which that allele would be placed. As a measure
of fit, the value |OL 

 

−

 

 EL| is stored, where OL is the
observed length. Over all alleles, the goodness of fit to the
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current binning parameters is taken as the sum of the
squared deviations between the observed length and
the nearest bin centre. The smaller this sum, the greater
is the tendency for fragments to lie towards the middle
rather than the edge of each bin.

To find the best binning parameter, the program steps
through all possible parameter combinations, seeking to
find the set that achieves the best fit. For maximum resolu-
tion, the search is conducted in two phases, one coarse and
then a second, fine-grained search centred on the para-
meter values generated by the coarse search. When the best-
fit values are found, all alleles are replaced with their
repeat unit equivalents and an output is produced contain-
ing summary statistics, including the standard deviation of
alleles in each bin, the mean and expected lengths of alleles
in each bin, the estimated size of offset and the best-fit
effective repeat length. To aid interpretation, a graphical
output is also generated in which alternate alleles are
colour-coded and plotted as a cumulative distribution.
Any misplaced alleles are then spotted with ease (Fig. 1).

 

The data set

 

As a test of the binning process, data from a whole genome
screen for hepatitis B were analysed. These data include
raw allele lengths for 318 individuals typed for 276
autosomal markers. All samples were run on an ABI 377
machine with the manufacturer’s internal size standards.

 

Results

 

Overall, the binning process experienced few problems,
and most alleles were binned satisfactorily. Figure 1(a)
illustrates a standard, accurate binning, with a graphical
output for the cumulative allele length distribution.
Figure 1(b) illustrates one of the worst cases found and
reveals the potential problems faced by any binning pro-
gram. Although some alleles reveal to nice, discrete length
distributions, others merge with each other, apparently
due to allele mobility heterogeneity. There is also the
problem that allele lengths do not always conform to con-
secutive numbers of repeat units, but instead have large
length gaps that will tend to exacerbate any mismatch
between the effective and applied repeat unit length.

Figure 2 depicts the observed distribution of effective
repeat lengths. The range we find runs from 1.77 up to
2.23 bp, peaking clearly in the size category 1.9 to 1.95 bp,
somewhat under 2 bp. Importantly, 30% of all alleles have
an estimated effective repeat length of 1.9 bp or less, imply-
ing that an allele length range of 10 repeat units or more
will see a proportion of alleles falling on bin boundaries
if an exact 2-bp periodicity is assumed (the effective length
is 0.1 bases shorter than 2 bp, so alleles 10 repeats apart will
have lost one full base pair relative to a 2-bp scale).

Figure 3 gives the overall distribution of standard
deviations across all allele bins at all loci. The standard

Fig. 1 Representative cumulative allele length distributions. (a)
Pattern obtained from a standard locus (d7s798) showing a clear,
discrete allele size distribution; (b) one of the worst cases found
(locus d7s2465), showing indistinct allele size classes where even
manual binning would struggle to identify allele class boundaries.
Alternate allele classes as inferred are shown in contrasting
colours.

Fig. 2 Frequency distribution of effective repeat sizes obtained for
276 human autosomal dinucleotide markers.
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deviation for each allele bin is calculated as the square root
of the variance of the mobilities of all fragments placed
within that bin. Several features are apparent. First, the
overwhelming majority of alleles have standard deviations
less than 0.5, the level at which 95% of all alleles will be
binned correctly (a standard deviation of 0.5 indicates that
95% of alleles lie within 1 bp of the bin centre). In practice,
resolution will tend to be a little better than this because the
deviations are taken relative to the predicted mean rather
than the actual mean. Consequently, alleles whose mean
does not match exactly the expected mean will tend to
show a slightly inflated standard deviation. Satisfyingly,
98.3% of all alleles have a standard deviation less than
0.5, where misclassification is unlikely. The second trend is,
overall, for the standard deviation to increase with increas-
ing allele length. Finally, there is a pronounced periodicity,
with standard deviations tending to be lower at lengths
such as 100, 150 and 200 base pairs. These lengths corre-
spond to the lengths of the internal standard fragments,
and suggest that fragment length estimation is noticeably
more accurate when the fragment lies near to a standard
band. Again, this is to be expected and has been noticed
previously as a tendency for between-laboratory consist-
ency to be greater for alleles lying close to size standard
bands (Jones 

 

et al

 

. 1997).

 

Discussion

 

Here we describe a simple algorithm aimed at speeding up
and increasing the accuracy of microsatellite allele-binning.
Applied to a wide range of dinucleotide loci in humans, the
results are encouraging, with a very high proportion of all
alleles being apparently correctly assigned. Importantly,
the generation of output statistics concerning the accuracy

of the binning process allows a rapid check as to whether
there are problems. We are hopeful that our approach will
help to increase the level of automation in allele-calling
(Bonin 

 

et al

 

. 2004; Pompanon 

 

et al

 

. 2005) without compromising
the error rate.

The extent to which binning is viewed as a serious prob-
lem varies between studies. Where allele diversity is low
and/or the loci being typed are tri- or tetranucleotides,
standard approaches may be both rapid and effective.
However, dinucleotide markers remain widely used for a
number of reasons, including the fact that they are gener-
ally easier to clone in numbers (Zane 

 

et al

 

. 2002) and were
often preferred over higher order repeats historically. Even
with dinucloetide repeats, experienced researchers will
know to spend the necessary time making manual adjust-
ments. Most problems therefore arise either through lack
of awareness that binning is by no means trivial, or because
too little time is available or spent on manual rechecking.

Perhaps the most striking aspect of this study is the
range of effective repeat lengths found. The peak size esti-
mate was in fact not two repeats, but a little under 2 bp,
while the estimates ranged from as low as 1.77 bp through
to an upper limit of 2.23 bp. This range corresponds
approximately to the limits of the possible range enforced
by the input search criteria, but this is no coincidence. Dur-
ing algorithm optimization, wider ranges were explored,
including the use of single base periodicities. On well-
behaved loci, the same answer emerged regardless of the
range allowed. However, on problematic loci, reduced
constraints sometimes resulted in obviously unrealistic
solutions, with good fits being achieved simply by having
more allele length classes. The current parameter limits
appear successful for two reasons. First, the distribution
of effective repeat sizes is clearly bell-shaped with well-
defined tails that fit within the allowable range. Second,
the fit criteria indicate that the overwhelming majority of
alleles binned fall close to the bin centres and rarely
approach the interbin length boundaries.

In the current study, only a tiny fraction of all alleles
draw from a handful of loci revealing unusably poor bin-
ning, and most of these are easily rectifiable following
manual inspection. This high success rate could be because
the loci had been preselected for having relatively few
problems due to, for example, alleles having both odd and
even numbers of bases. However, this in no way implies
that such problems do not arise or are even rare. For this
reason, post hoc scrutiny remains a vital part of the whole
allele calling procedure. To help alleviate this problem,
possible problematic loci are flagged and a more detailed
output generated.

The most widely used automated system is 

 

genemapper

 

which uses two stages of binning. At the start of a study,
allele classes are defined using a combination of an auto-
mated procedure and manual input, adjusting suggested

Fig. 3 Relationship between mean allele length (bp) and standard
deviation summarized over 276 autosomal markers showing that
the majority of alleles have a low standard deviation (< 0.4)
making misclassification unlikely.
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bin sizes and bin centres. Once all bins have been allocated,
alleles are then called by finding the nearest bin centre.
While we do not use 

 

genemapper

 

 ourselves, talking to
colleagues reveals that three common problems seem
apparent. First, none of the researchers we spoke to used
the automated initial stage but instead focused on defin-
ing bins manually. Second, we also received reports of
‘bin creep’, a tendency for the migration rate of particular
alleles to vary somewhat over time, in some cases caus-
ing a mismatch with the original bin definitions. Third,
new alleles falling outside the expected range caused
problems and were placed with poor accuracy. All three
of these problems are largely negated by the system we
use, where no reliance is placed on predefining a fixed
series of bins. This offers a particular advantage for lower
throughput, nonhuman systems where sample sizes are
seldom large enough to be confident that all alleles have
been found.

In conclusion, we demonstrate an effective algorithm for
binning the output from automatic genotyping systems.
Although demonstrated for dinucleotide repeats, the most
challenging class, our program will also operate on data
from tri- and tetranucleotides. Applied to real data, we
highlight the common problem that nominal repeat length
frequently fails to match the effective repeat length as
estimated by an automated sequencer. We hope that our
algorithm will help to decrease errors associated with
automated allele-calling.
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